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SUMMARY

The conservation-law form of the inviscJd gasdynamic equations

has the remarkable property that the nonlinear flux vectors are

, homogeneous functions of degree one. This property readily permits

the splitting of flux vectors into subvectors by similarity trans-

,, formations so that each suhvector has associated with it a speci-

fied elgenvalue spectrum. As a consequence of flux vector split-

ting, ne. explicit and implicit dissipative flnite-difference

schemes are developed for first-order hyperbolic systems of equa-

tions. Appropriate one-slded spatial differences for each split

flux vector are used throughout the romputatlonal field even if the

flow is locally subsonic. The results of some preliminary numeri-

cal computations are included.
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I. INTRODUCTION

Finite-difference schemes for the conservation-law form of the

unsteady invlscid gasdynamic equations are restricted to a very

limited class of spatial difference approximations in subsonic flow

regions. 0nly centered difference operators lead to difference

methods that are simultaneously stable for both the positive and

negative characteristic speeds (i.e., eigenvalues) that are asso-

ciated with the spatial flux terms in subsonic flow. Use of any

other class of spatial dlfferential operator requires splitting

the flux terms into Components of a restricted type.

There are various reasons for using one-slded spatial differ-

ence operators. For example, for the model scalar wave equation,

one-slded (or upwind) schemes frequently have superior dissipation

and dispersive properties to those of a centered scheme [1,2]. An

explicit second-order accurate upwind scheme can also have twice

the stability bound of a centered second-order scheme [i]. Another

motivation stems from a desire to increase numerical efficiency of
!

implicit algorithms. For example, an implicit upwind finite 4 1

difference algorithm can lead to a lower diagonal banded matrix

that is more easily inverted than the tridiagonal and pentadiagonal

matrices usually associated with centered schemes.

Our objective is to devise a means of splitting the flux

vectors of a hyperbolic system in order to extend the class of

allowable spatial differencing schemes to achieve more robust

4
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: algorithms and to improve computational efficiency. As in earlier

related work [2,3], we restrict our attention to the Inviscld gas-

dynamic equations in conservation-law form and take advantage of

the fact that the flux vectors are homogeneous of degree one. We

have not investigated flrst-order conservative systems that are

nonhomogeneous. The basic ideas used here, however, apply to first-

order nonconservatlve hyperbollc systems of equations. A related

explicit algorithm for the equations of gasdynamlcs written in

nonconservatlon law form was recently proposed by Moretti [4].

In this paper we first review the restrictions placed on the

spatial difference operators of hyperbolic systems that have both

positive and negative eigenvalues. Using the one-dlmenslonal

inviscid equations of gasdynamics, we then develop a methodology

for splitting the equations into components of the same character-

istic behavior. Both explicit and implicit numerical algorithms

are devised and tested for the split system of equations. The

methodology and algorithms are then extended to multidimenslons.

2. MOTIVATION AND BACKGROUND

_ In this section we review the restrictions placed on spatial

difference approximations by the characteristic speeds (elgen-

values) of a hyperbollc system.

To illustrate the basic notions we consider a one-dlmenslonal

system of conservation laws

5
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_U + _F
0 , (2.1)

where U and F are m-component column vectors. The system (2.1) ,, -,

can be rewritten as a quasi-l_]ear system

8U 8U (2.2)
+ A(U) _x = 0 ,

where A is the Jacobian matrix _F/3U. The system (2.2) is _

hyperbolic at the point (x,t,U) if there exists a similarity trans-

formation such that # '

_2 C

Q-IAQ = A = x3 (2.3)
s

0
Am

where A is a diagonal matrix, the eigenvalues A£ of A are

real, and the norms of Q and Q-I are uniformly bounded.

For the purpose of a linear stability analysis, we assume

that the coefficient matrix A is "frozen," that is, constant.

By virtue of Eq. (2.3), Eq. (2.2) can be transformed to the

uncoupled system

_u£ _u_
_--_+ AE-_x = 0 , £ = I, 2, 3, • •., m (2.4) .

by defining a new vector u - (u 1, u2, u3, • •., Um)t = Q-Iu.

Consequently, when analyzing the stability of numerical algorithms

as applied to the linearlzed version of the system (2.2), we need

only examine the scalar Eq. (2.4). For simplicity, the subscript I

£ will be dropped in the remainder of this section.

6
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To analyze the effect of one-sided spatial differences on

_ stablllty we leave the tlme variable continuous and dlscretlze the

. spatial variable as x = xj = JAx. Let 8u/_x be approximated by

the flrst-order one-slded difference quotient

" _ul VxUJ :

[
S

_-_j _x + 0(_x) , (2.5)

where Vx is the classical backward-difference operator

VxUj = uj - uj_ 1 • (2.6)

This spatial dtscretization reduces Eq. (2.4) to a system of first-

order ordina_ differential equations:

duj uj - uj_ I

d_-+ t Ax = 0 . (2.7)

For simplicity, assume spatially periodic boundary conditions

and look for a solution of the form

uj(t) - v(t)e IkjAx , (2.8)

where v(t) is the Fourier coefficient, i = ¢_, and k is the

wave nu_er. By inserting Eq. (2.8) in Eq. (2.7), one finds that

the Fourier coefficient satisfies the ordinary differential

equation

. dv
d-_ = ov , (2.9a)

where

o - --- 2 sln 2 + i sin 8 , O = kAx . (2.9b)
Ax
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Ce°tThe solution is v - so for Eq. (2.9a) to have a bounded solu-

tion, the real part of o must satisfy Re o £ 0, which requires _ "

that I > O. "'

Instead of the backward-dlfference operator (2.6), let au/ax
.l

be approximated by _ _

f i'au - _ _xUj + 0(_x) , (2.10)
7x j _x 4

where Ax is the fo_ard-difference operator

AxUj = uj+ I - uj . (2.11) i

If we repeat the Fourier stability analysis, we find

[ ]o =A-_x 2 sin 2 - i sin e , e = kAx . (2.12)

Again, fo_ stability, Reo S O, and we now require that _ < 0.

In summary, for one-sided spatial difference approxlmtlons

we have the followlng result: If au/ax is approxi_ted by the

backward-dlfference operator (2.6), then the resulting ordinary

dlfferentlal equation (2.7) will be stable if and only if A > 0

(i.e., the wave travels to the right). Conversely, if au/_x is

approximated by the fo_ard-difference operator (2.11), the result-

ing ordinary dlfferential equation (2.7) will be stable if and

only if A < 0 (i.e., the wave travels to the left). In general,

no conventional backward, fo_ard, or unsFametrlc operator such as

_ul -2uj_ 1 - 3uj + 6uj+ I - uj+ 2

I_xj 6_x + 0(_x_) (2.13)

llqP--

,7
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will yield an ordinary dlfferentlal equation which is simultaneously

stable for both positive and ne_atlve elgenvalues. Although this

! _ statement is Justified in Appendix A, its correctness is apparent

from the fact that any noncentered spatlal-difference operator will _I
¥

° yield an eigenvalue (see, e.g., Eq. (2.9b)) with a nonzero real

part whose coefficient is the elgenvalue _. Hence, the real part

cannot satisfy Reo < 0 for both positive and negative I.

Returning to the system (2.1), it is cl_d_ that if a single

noncentered difference operator is used to approximate _F/_x

when the eigenvalues of the Jacoblan matrix A are of mixed sign,

then the resulting tlme-continuous _ethod will always produce a

numerical instability.

3. ONE-DIMENSIONAL EQUATIONS OF GASDYNAMICS

In one spatial dimension the Invlscid equations of gasdynamlcs

can be written in the conservation-law form (2.1) where

U = F(U) - (m210)+p , (3.1a,b)

L(e + p%m/pJ

and where m = pu. The primitive variables of (3.1) are the den-

sity O, the velocity u, and the pressure p. The total energy

per unit volume, e, IM related to the internal energy per unit

mess, ¢, by

• = 0¢ + 0u212 = O_ + m21(20) • (3.2)

9
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The system Is completed with an equation of state

p = p(0,¢) • (3.3)

For the case of a perfect gas,

p = (y - l)p¢ , (3.4) i

which can be rewritten using (3.2) as

P = (V - l)[e - m2/(2p)] , (3.5)

where 7 is the ratio of specific heats, i

By using (3.5), the flux vector F(U) can be rewritten as i o

FCU) = _ - l)e + (3 - "¢)m2/(20 • (3.6)

Lvem/o - (v - 1)m3/(2P 2)

The Jacoblan matrix A = _F/_U is easily computed and found to be

A = (y - 3'u2/2 (3-y)u y - . (3.7)

7 - 1)u 3 - 7eu/p yelp- 3(y- 1)u2/2 >u

The elgenvalues of A are

Xl = u , X2 = u+ c , X3 = u- c , (3.8)

where c = (yp/p)I/2 Is the local speed of sound. For subsonic

flow lu[ < c, and the elgenvalues are of mixed slgn since u + c

and u - c are of opposite sign.

The Invlscld equations of gasdynamlcs have the rather remark-

able propert7 that If the equation of state has the functlonal

form

p = pf(c) , (3.9)

10
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A

&_- then the nonlinear flux vector F(U) is a homogeneous function of _;_,

degree one in U; that is F(_U_ = aF(U) for any val_e _. The
b

equation of state (3.4) is clearly a special case of (3.9) and theA

fact that F(U) is a homogeneous function of degree one is obviot;z

- by inspection of the flux vector (3.6). By application of Euler's

theorem on homogeneous functions (see, e.g., [5]) there follows

F = AU , (3,10)

where A is the Jacoblan matrix _F/_U. One can readily verify

the above equality by using Eqs. (3.7) and (3.1a) and making the

indicated utrlx-vector multlply. The flux vectors in two and

three spatial di_enslons also have the homogeneous property.

If F _atlsfles the homogeneous property and A has a com-

plet_ set of linearly independent elgenvectors, then _he flux vec-

tor F can be split into subvectors, each one of which is asso-

clated with a tailored set of elgenvalues. In particular, the

elsenvalues sssoclated with one subvector can be all pobltive,

those assoclated with the other all negative. These subvectors can

then be differenced Indlvlduslly with an appropriate one-slded

" scheme in conservatlon-la_ form. The details for the one-dla_enslonal

case are outlined in the following section.

II

i
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4. FLUX VECTOR SPLITTING FOR THE ONE-DIMENSIONAL EQUATIONS

OF GASDYNAMICS

Consider Eq. (2.1) with U and F defined by Eq. (3.1). The

c

flux vector F(U) has the homogeneous property defined in the pre- |_!,
ceding section and consequently F can be split iuto two p_rts

as [2], [3]

F = F+ + F- , (4.1)

where F+ corresponds to the subvector associated with the posi-

tive eigenvalues of A, and F- corresponds to the negative eigen-

values. This splitting is derived as follows. By virtue of (3.10)

and (2.3),

F = AU = QAQ-Iu , (4.2)

where the diagonal elements of A are given by (3.8).

Any eigenvalue I£ can be expressed as

_ - _ + xi, (4.3)

where

.+ + -
^_" 2 ' _ " 2 ' (4.4>

so that if %_ _ 0 then _ m _, _ . O, with the converse result

for _ < O.

Using the above formulas, we split the diagonal matrix

A - A++ A- , (4.5)

where A+ and A- have as diagonal elements I_ and I_, respec-

tively. Equation (4.2) can be rewritten as

12
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" F --Q(A4- 4-A-)Q-IU
C

: = (A4-4-A-)U

_ =F ++F- , (4.6)

where

" A4- = QA4-Q-I , A- = QA-Q -I (4.7)
i
)
).

F+ = A+U , F- = A-U , (4.8) ,

and

A = A+ 4-A- . (4.9)

The elgenvalues of A+ are nonnegatlve and those of A- are non-

positive. For the invlscid gasdynamlc equations, the matrices Q

and Q-I are given by

Q = HT , Q-I = T-IM-I , (4.10)

where M and T and their inverses are given in [2] for one and

two space dimensions and in [6] for three space dimensions.

The elgenvalues given by Eqs. (3.8) are split according to

Eqs. (4.3) and (4.4) into

. _+.u+c+2lu+ cl x2=u+c-2lu+cl (4.lZ)

+ .-c+ lu-cl _; u-c- lu-clX3 " 2 = 2 "

The corresponding subvectors F+ and F- for the special case

0 < u < c are

13

t

1979020779-015



2yu + c - u

F+ = P-_ 2(y- l)u 2 + (u+c) 2
2y

(_- l)u3 + (u+c)3 + (3-y)(u+c) c2
2 2(y- 1)

- (4.12a)
u - c

= P-- (u - c) 2
F- 2y

(U- C)3 (3- Y)(u- C)C 2+
2 2(y - 1)

or, if u > c,

F+ = F , F- = 0 , (4.12b)

where F is (3.6). The subvectors (4.12a) can be obtained, by a

tedious calculation, directly from (4.6) or from the generalized

flux vector (4.19) given at the end of this section.

The elgenvalue splitting (4.4) is not unique and other split-

tings into positive and negative parts are possible. For example,

consider the splitting given by [3]:

• u+ lul q =u- lul2 2 '

+ = _'_ }'I (4.13)_'2 _'T+ c =. ,

+ + _ = _-c_3 = _I

which satisfies (4.3) and the sum _ + %[ = A£ gives the physi-

cal eigenvalues.

A more general class of splitting is given by

+ A8 + . (4.14)
_ = _£ £ • . ,

14

• _ ,wk_,. t ' ,{-_ ' , a ,
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_. with corresponding subvectors

_ Fa Fg,_ F = + +... , (4.15)

where l_ is not necessarily split into positive and negative

c parts. For example, the sound wave or pressure term contribution

° to the elgenvalue could be split from the flow velocity. In the

|

general notation (4.15) wlth a ffiu and B = c, one has _,

u c

u c I!_2 = u 12 = c , (4.16)

C

U=U 13=-C _13

and the subvectors are given by

= F cF u uU = u , = . (4.17)

This splitting, in two and three dimensions, has been used in

parabolized Navier-Stokes calculations [7].
i

Since several splittings are possible, it is convenient to

define a "generalized" flux vector from which any split subvector

can readily be computed. The generalized flux vector is defined by

= QAQ-IU , (4.18) >
i.

where A is the diagonal _trlx _'

1 O ,

O

15 '
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I'

whose eigenvalues _ are arbitrary. A direct calculation for

the one-dlmensional gasdynamic equations yields
i

2(_- 1)_ +i 2+_3

_I = 2_ 2(7-i)_IU + _2(u+c) + _3(u-c) , (4.19)

_2 i3
(_-l)ilu2+ -_-(u+c)2+ -T (u-c)2+ w

where

(3 - V)(i2 + _3)c2

w = 2(7 - i) " (4.20)

The vector _ has a rather striking structure. One can

easily verify that if the _ are replaced by the physical elgen-

values (3.8), then (4.19) reduces to the physical flux vector (3.6)

which, of course, must follow by Eq. (4.2). Flux formulas for any

splitting follow directly by inserting the appropriate split

eigenvalues (4.14) into Eq. (4.19). In particular, to arrive at

the splitting defined by Eq. (4.11), F+ follows directly by

inserting I_ into Eq. (4.19), and F- follows by inserting I_

into Eq. (4.19). The matrices A+ and A- can be obtained from

Eq. (4.7). The other splittings are obtained in a similar way.

The generalized flux vectors _II' _II for two and three

spatial dimensions are given in Appendix B. From these generalized

vectors, the flux vectors for any eigenvalue splitting can easily

be computed for the invlscld equations of gasdynamics.

In concluding this section we remark that, in general,

A+ # _F+/_U and A- # 8F-/SU. However, in all the numerical tests

16 i"
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that we have made, _F+/_U does have positive elgenvalues and

_F-/3U has negative elgenvalues; these roots, however, are not

identical to those of A+ and A-.
. 3

5. ALGORITHMS FOR ONE SPACE DIMENSION i_

!
In this section we illustrate several numerical algorithms i_

that can be constructed for the one-dlmensional equations of gas- I,
|

dynamics by use of flux vector splitting. I

Explicit Methods _'_

MacCormack's scheme [8] for the one-dlmenslonal system of

conservation laws (2.1) is

VxF_
U_ At -- (5.i)

n

j = uj - _x '

-- A Fn+l

U_+I = _ (b_+l + U_) At x J2 2 Ax ' (5.2)

n

where Uj denotes the finite-dlfference approximation to U,

F_ = F(U;), etc., and the forward and backward difference oper-

ators are defined by Eqs. (2.11) and (2.6).

Since the predictor (5.1) is one-sided (upwind), the corrector :_

(5.2) can be modified as

2 n VxFn+l._. At VxFj At
n+1.½ +uj (5.3)Uj 2 Ax 2 Ax '

to obtain a completely upwind second-order scheme [1]. A necessary

local condition for the stability of the scheme Eqs. (5.1) and (5.3)

is that all the etgenvalues of the Jacobtan matrix A be positive,

17
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MacCormack's scheme can be modified by using a forward differ-

ence in the predictor, and a backward difference in the corrector.

4

Likewise, the upwind scheme (5.1), (5.3) can be altered by replac-

ing V by & and V2 by -A2. In this case a necessary condition

for the stability of the altered scheme is that all the elgenvalues i

of the Jacobian matrix be negative.

The eigenvalue splitting (4.11) or (4.13) of the previous

section can be used so that a split upwind version of MacCormack's

scheme can be used when the eigenvalues are of mixed sign, that is,

in a subsonic region. The split upwind algorithm is

Vx(F_) n Ax(Fj) n
.n+l n _t At _ (5.4)
uj = Uj - Ax _x '

2 +n )

Vx(Fj)Vx(Fj) . +.n+]

%'n+1. + - \ +
2 - n \

(&x(FJ) Ax(Fj) n �`�At
+-f\ _x _x " (5.5)

According to linear stability theory, the scheme (5.4) and (5.5)

is stable if and only if

+ = + + _£ are the elgenvaluesfor all elgenvalues _ where _ I£

of the Jacoblan matrix.

The MacCormack scheme, (5.1) and (5.2), is a symmetric scheme

in the sense that the grid point cluster is symmetric about the

center point J at the completion of the corrector step. A sym-

metric (explicit) second-order scheme has a predominantly lagging

18
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phase error and an upwind scheme has a leading phase error [i].

The opposite phase error of the symmetric and the upwind schemes ,

E'
" suggests that a considerable reduction of phase error would occur

if the two schemes were alternated on successive time steps. A

temporal switching of schemes is the basis of Fromm's method of

zero-average phase error [9].

j -

Implicit Methods

A noniteratlve implicit finite-difference scheme, for a one-

dimensional system of conservation laws is [2]

where I is the identity matrix, AUn = Un+l - Un, A is the

Jacobian matrix, and _x is an appropriate spatial difference

operator.* In general, the spatial derivative approximations on

the left- and right-hand sides of (5.6) can be different. The

parameters 8,_ determine the particular time-differencing

approximation used. Scheme (5.6) includes three well-known

implicit formulas

I
8 = _ , _ = 0 trapezoidal formula;

8 = i , _ = 0 backward Euler;

i

% - I , _ - _ three-point backward.

For a more general formulation that includes all linear multistep

(time-differencing) methods see [i0].

*In Eq. (5.6) and in similar equations throughout this paper,

notation of the form (I + At_xA)AU denotes AU + At_x(A_U ).

19
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With use of the split flux vectors (4.7), one-sided spatial

difference approximations are possible. For example,

eat

&t .b_+ n f - n _ AU_-I (5.7) -

where

bx 3Fj - 4Fj_ ! + Fj_ 26 Fj = 2_x (5.8)

and

6xfFj -3Fj + 4Fj+ 1 - Fj+2= 2Ax (5.9)

are second-order accurate one-slded difference operators.

The splitting F = F+ + F- allows an approximate factoriza-

tion of the left-hand side of (5.7) into the product of two

operators as

(i0__+fo)(_ o)+1+----_ 1+__I _"_

- (6xFj [ + (5.10)_(_)' \�o)-_-_;-,
This scheme is implemented by the sequence

( �o),._ _(__)(_, X�o)-__-,_+l+_e_--_v_j) Auj xFjl+_F_l +I +_
(5. lla)

+ i+---__A_ _v = Au , (S.llb)

u_'=uj"+Au_. • cs.uc_

2O
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Unlike Eq. (5.7), the solution of Eq. (5.10) does not require

the solution of a block tridiagonal system because both Eqs. (5.11a)

- and (5.11b) lead to block bidiagonal systems. For example, b>

writing out (5.1ib)

b

i + _ Ax i + _ Ax (_ , (5.12)

_e see that the solution is achieved by a right to left sweep

(decreasing J) with the inversion of the 3 x 3 matrix in the

parenthesis on the left required at each mesh point. The elgen-

values of this matrix are greater than or equal to unity and con-

sequently the matrix is nonslngular for any &t.

The scheme (5.10) is second-order accurate, dissipative, and

unconditionally stable for e - i, C = 1/2 (according to linear

theo_/). In one spatial dimension, computational efficiency can be

lost in comparison to Eq. (5.6) with _x a three-polnt central

operator. This is chiefly because A+, A-, F+, and F- are costly

to form. In multidlmenslons, however, an advantage is achieved by

avoiding the solution of block tridiagonal systems.

6. NUMERICAL EXPERIMENTS IN ONE DIMENSION

The numerical solution of a one-dimensional shock-tube flow

was chosen to Judge the viability of the numerical algorithms given

in _he previous section. As a model problem, consider a tube of

large extent in which a diaphragm separates a perfect gas at rest

with different static pressures but at a uniform temperature.

21
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Wlth rupture of the diaphragm, an expansion propagates Into the

hlgh-pressure gas, while a shock wave, followed by a contact sur-

face, propagates into the low-_ressure gas. Details of this flow

are described in standard texts (e.g., Llepmann and Roshko [11]).

In our calculations, the initial pressure ratio across the

diaphragm Is taken a_ 5 to 1. The solution results for various

methods are shown in Figs. i to 5 in terms of the nondimenslonal
!

density, 0/00, where p0 is the initial hlgh-density gas. In all
1

cases, the same spatial grld and tlme step are used and

_t/Ax = 0.2.

The results for the explicit upwind scheme (5.4), (5.5) are

shown In Flg. 1. Also shown are the exact locations of the shock

avd contact waves and exact constant density levels. The initial

location of the diaphragm is taken at x = 3.0. Overall, the

numerical accuracy Is good and although the contact wave is

smoothed out, the overshoots are moderate. For comparison pur-

poses, the results for thls flow obtained using the conventional

KscCormack scheme are shown in Flg. 2. The accuracy of the two

schemes is comparable, wlth the exception of a large spike in

density as a result of start up. MacCormack has shown that the

addition of a dissipation term, especially in expansion regions, i

can control such spikes [12]. We did not program thls version,

however, In order to illustrate the effectiveness of alternating

the centered and upwind schemes, i
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In Fig. 3 we show the solution obtained using the upwind scheme

(5.4), (5.5) to advance the solutlon for odd values of the time

" index n and using the HacCormack scheme (5.1), (5.2) for the even

values of n. The results of this combined algorlthm are clearly

superior to the application of either of Its constituents. The

overshoots are much reduced, and the Jumps are crisper.

Results for the implicit upwind scheme (5.10), are shown in

Fig. 4. Here, trapezoidal tlme-differencing was used. Again the i

results are good and quite comparable to those obtained wltF the _i

i
expliclt procedure. Finally, in Fig. 5 we show the results obtained

from the "conventlonal" implicit algorithm uslzl8 centered spatlal

differencing and three-polnt backward tlme-dlfferenclng. A small

amount of fourth-order numerlcal dissipation was also added [13].

Overall, the results are again quite comparable.

7. FLUX VECTOR SPLITTING IN TWO SPACE DIMENSIONS

In two spatlal dimensions, a hyperbollc system of conservation

laws has the form

_U + _F _G
_-_ _+_- 0, (7.1)

where for the £nvlscld gasdynamlcs equations

• o p"

0 Ou Ov ,_

m Ou2 + Our
U " , F = , G " , (7.2)

n Ouv Ov2 + p

e u(e+p) v(e+ p)
• o
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where m = pu, and n = pv. The primitive variables of (7.2) are

density p, velocity components u and v, pressure p, and total

energy per unit volume e. The equation of state is

P = (V - 1) - 2_0 + (7.3)

This system can be rewritten in quasi-llnear form as i

_U _U _U
_+A_x+9_y = 0 , (7.4)

where A and B are the Jacoblan matrices

A = _F/_U , S = _G/_U , (7.5a,b)

As in the previous section, we use the fact that F(U) and G(U)

are homogeneous functions of degree one in U and consequently

F = AU , G = BU . (7.6a,b)

For the inviscid equations of gasdynamlcs, the matrices

A and B can be dlagonalized as

q-iAQ = u (kI = i, k2 = O) (7.7)
u+c

O
u-c

0

Q__. v (k_ = O, k2 = 1) (7.8)
v %0

v-c

where c is the local speed of sound. The matrices Q and Q-l,

as defined in Appendix B, are functions of the two parameters

kl,k 2 and of the dependent varlables. The values of (kl,k 2)

indicated in the parentheses of (7.7) and (7.8) are the value_
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that diagonalize A and B. Since A and B dc not conrnute, they

cannot be diagonali_ed by the same similarity transformation.

. The flux vectors F(U) and G(U) for the invlscld equations o£

gnsdynamlcs can be split into subvectora, each of which depends on

" elgenvalues of the same sign exactly as in the one-dimensional

case. A generalized flux vector

_i " Q^Q-_u, (7.9)

analogous to (4.19) _or one space dimension, is given in Appendix B

for two space dimensions. (For completeness, a three-dlmenslonal

version is also given.) By usinR the generalized flux vector, one

+can comvute F-, G- for any desired elgenvalue svllttlng. For

exa_ole,

+ +
x_) (7Io)r*- _i(h-1, k2-o, x_, x3,

where _I as _iven by Eq. (B9 _ of Appendix B is evaluated using

the particular values of the parameters (kl,k 2) and (_I' _3' _t_)

indicated in the parentheses of Eq. (7.10). The positive elgen-

�values AI' _3' _ are defined by Eq. (4.4), where A! = u,

A3 = u + C, A_ = U - C.

8. ALGORITWMSFOR TWO SPACE DIMENSIONS

Just as in the one-dlmenslonal case, the split subvecto."

forms allow construction of novel numerical difference sch_ses.

25
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Explicit Methods

The natural extension of the upwind scheme (5.4), (5.5) to two

spatlal dimensions is

n + n - n + n

Uj,k --Uj,k y

(8.1)

Oj,k 21 j'k Uj,k x(Y;,k + Vx(Fj,k )

.,_y]hy(G-_,k)n+--']"-+ .-_/ 2 + n

- y%,k - 2 ,

where x = J_x, y = kay, and ux = &t/Ax, Uy = _t/_y. Although

this upwind version of MacCormack's scheme requires considerably

more work than the conven*{onal scheme, it is a more robust algo-

rithm if the solution exhibits large spatial gradients. In addi-

tion, as in the one-dimensional case, a very effective algorithm

is obtained when the upwind scheme is alternated with the conven-

tional MacCormack scheme on successive time steps.

If only flrst-order time accuracy is required, a simple

explicit scheme is given by

bn+1 n b + fx + 6yG + cSyf(;')lj,k , (8.3)= Uj,k - At(_xF + 6 F- b + nJ,k

where 6b and 6f are defined by (5.8) and (5.9). Such a scheme

is practical for steady state problems and it could be the basis

of a point relaxation algorithm.

26
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Implicit Methods

The natural extension of (5.7) to two spatial dimensions is

[I (VxAj ,kI AxA;,kl VyBj ,k' ;,k,n}] n_. " + 1 +_eAt + n + n + + n + gyB AUj,k I

! . A(___)(b + ,n f ;,kln+ b + in __fG-y3,kln)(I-_)n-I--- 6xFj,k, +_ F _yGj, k , + AUj,k

: (8.4)
i

The left-hand side of the scheme (8.4) can be factored into ;

the product of two operators as +

whe%e

eat
h = _ (8.5)

i+_

and "RHS (8.4)" denotes the right-hand side of (8.4). This

scheme can be implemented by the sequence

[I + h(VxA;,kln + VyB;,kln)]AU;,k = RHS (8.4) , (8.6a)

[I + h(AxA;,kln + AyB;,kln)]Aujn,k = AU;,k , (8.6b) _

uJ,k"n+! n AU_,k.= Uj, k + (8.6c)

Compared to the class of centrally-differenced implicit

schemes [2, 14, 15] the algorithm (8.6) has both advantages and

disadvan=ages. Equation (8.6a) requires the solution of a sparse

block lower diagonal matrix and Eq. (8.6b) requires the solution

of a sparse block upper bidiagonal matrix. Consequently, the com-

putational inversion work is much less than that of solving two
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7 block tridiagonal matrix sequences, as a conventional central-

differenced algorithm would require. Moreover, in three dimensions

the plus-minus split subvectors can still be approximately factored

into just two factors -- a sparse upper block-triangular matrix and a

sparse lower block-triangular matrix. In three dimensions, the use

of central spatial differences requires the inversion of three

block tridJagonal sequences. The upwind differences are also

dissipative, so it is not necessary to add higher-order dissipa-

tion terms.

On the other hand, twice as many Jacobian matrices and flux

vectors have to be formed with the plus-minus splitting. Further-

more, these are more involved to form than the usual Jacobians,

+ +

although with careful progra_ing certain terms in A- and B- as

+ +

well as F- and G- can be formed simultaneously.

Other difference schemes can be formulated that use the plus-

minus flux vector splitting. An implicit second-order accurate

scheme is given by

- n

[I+h(VxA;,k,n+_yBj,k, +VyB_,k,n _ [I+h_xAj,k,n]_U_,k=RHS (8.4) .

(8.7)
%

This factorization does require a block tridiagonal inversion in

the y-directlon. Consequently, viscous terms in the y-direction

can readily be included into the implicit operator.
i

A seml-impllcit, first-order accurate scheme in time is 1

obtained from Eq. (8.7) by dropping the factor (I + h_xAj,k In) and
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letting e = i, _ = O. Indeed, once the flux vectors are broken

into subvectors, a large number of difference schemes can be devised

to achieve possible advantages in numerical accuracy, robustness,Q

computational efficiency, and storage.

9. NI_ERICAL EXPERIMENTS IN TWO DIMENSIONS

Numerical calculations of model problems in two dimensions

have been used to verify the stability and practicality of the

algorithms of the last section. For example, the explicit algo-

rithm (8.1) was tested on a square uniform grid with periodic bound-

ary conditions. Waves were followed in time for arbitrary (non-

physical) initial data. Although no results are shown, it was

noted that the upw_d scheme required about 3 times more computa-

tional time than standard MacCormack scheme.

The impllcit algorithm (8.5), was tested on a simple biconvex

airfoil with linearized boundary conditions. A typical transonic

airfoil solution result is shown in Fig. 6 for a free-stream Mach

number of 0.84 and a body thickness ratio of 11.4. The eigenvalue

splitting (4.4) was used. Also shown are the calculated results

obtained from the conventional implicit algorithm using central

differencing. Both calculations use the same grid and boundary

conditions. The grid is clustered in x and y and uses 50 × 28

points. The results shown are in good agreement for this coarse

grid.

29
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The numerical calculations illustrated two weaknesses of the

upwind scheme that have now been essentially corrected. Whenever _:

an elgenvalue changes sign, it is either suddenly set to zero or _"

is suddenly nonzero. Elements of any one subvector are suddenly _

changed and the local accuracy of the difference approximation can

suffer. In Fig. 6 one notices a small oscillation in the data at

the sonic line where the (u - c) eigenvalue changes sign. This

oscillation would actually appear much worse if it were not for the

blending terms that are added to the eigenvalues to smooth out

sudden changes. An example of blended terms are the following:

+ u +,,lul+ _1 _ u - tul_I = 2 = 2 E 1

+c+ lu ,_3 _ u+c- lu+cl_3 = 2 = 2 E 3

+ u- c+ tu- cl +_. _Z u- c- lu- _1_4 = 2 = 2 -ch ,

where e£ are small positive numbers which smoothly approach zero

as I_£I increases. We remark that nonconservatlve formulations

are not afflicted with flux vectors that have discontinuous

derivatives.

As previously noted, A+ # 3F+/gU, although the two matrices

share elgenvalues of the same sign. For the shock-tube calcula-

tions the Lime step was limited by accuracy considerations and no

difficulty was encountered in using A+ and A- on the left-bond

side _f the implicit algorithm. In the steady state airfoil cal-

+culatlon we did find that using A- instead of _F-/_U imposed

30
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: expllcit-like time-step restrictions. Use of the true Jacoblan

resulted in a more robust algorithm. This is quite a different

result than was found with convectlcn-sound speed splittlngs [3]

in which the similarity matrix had identical stability properties

to the actual Jacobian.

i0. GENERAL CONSERVATION FORMS FOR HYPERBOLIC SYSTEMS

The implicit algorithms developed in the previous sections
t_

were for a Cartesian coordinate system; however, computational

fluid dynamical problems involve flows over (or through) arbitrarily

shaped bodies.

In this section we show that the previously derived algorithms

can be made applicable to general flow fields. One method of

handling complex geometries is to map the physical plane- for

example, an airfoil in two spatial dimensions - into a rectangular

computational plane. The desired transformation has the proper_y

that the airfoil surface is coincident with coordinate lines in the

physical plane, and the airfoil surface lles along the boundary of

the rectangular computational plane. The transform should also

cluster grid points to regions where large spatial gradients occur.

Since the actual numerical computation is carried out in a trans-

formed rectangular plane with a uniform mesh, we review in this

section the form of the transformed conservation-law equations and

the corresponding difference algorithm.
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f=

C

It can be shown [16] that the conservation-law form (7.1) is i
In

retained under an arbitrary time-dependent coordinate transformation it1'
_ = g(x,y,t) , n _ n(x,y,t) , T = t . (lO.i) " t.,

I
In particular, one obtains

a--?g =° , (lO.2)

where U - U/J and the flux vectors F and G are linear combina-

tions of the vectors of (7.2):

= (_tU + _xr + _yG)/J (lO.3a)

= (_tU + nxF + nyG)/J (10.3b)

and

j = _(__._n) = _xny - _ynx (10.4)_(x,y) I'

is the Jacobian of the transformation. It is important to note _I"

that Cartesian components of velocity and momentum are retained in _

(i0.2). The equations in three spatial dimensions are straight- '

forward generalizations of the above equations.

As in the previous sections, we use the fact that F(U) and ! .

G(U) are homogeneous functions of degree one in U. As a

consequence !

F(_ F(U/J) = F(U) " AU , (i0.5a)J _

G(U)j = G(U/J) - G(U) - BU , (10.5b) i
I

where !

A - BF(0)/B0 , B - BG(0)/@U .

?
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;t

(Note that A and B are the Jacoblans for Cartesian coordinates

_ defined by Eq. (7.5).)

• Hence, Eqs. (10.3) can be rewritten as

• F = (kl0I + kllA + kI2B)U ' } (10.6)
; G = (k20I + k21A + k22B)0 ' 1

where kl0 = _t' etc., are the scale factors. The generalized

flux vector _II defined in the appendix can be used to calculate
^+ ^F-',G- for any arbitrary eigenvalue splitting. This is apparent

from Eqs. (BT), (B6), and (BI) of Appendix B because the coeffi-

cients kI and k2 of Eq. (BI) are arbitrary real numbers, which

for the present application are taken to be the scale factors

_t' _x' _y' etc. Finally, since the conservation-law form is

retained by (i0.2), the numerical algorithms of See. 7 are

directly applicable to general conservation forms.

Ii. CONCLUDING REMARKS

A hyperbolic system of conservation laws whose associated

Jacobianmatrices have positive and negative eigenvalues can only

be spatially differenced as a system with centered operators.

However, splitting the flux vectors into subvectors whose associated

eigenvalues are of the same sign allows use of one-slded (upwind)

operators.

In this paper, we have made use of the fact that flux vectors

of the inviscid gasdynamic equations are homogeneous functions of
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degree one to construct flux vector splittings. As a consequence,

new explicit and implicit dissipative difference methods are

devised which are more robust and computationally efficient than i

conventional spatially centered schemes. Pzeliminary computational

experiments show that the new methods are feasible, although

clearly both additional analysis and numerical testing on "realistic"

problems are required.

APPENDIX A: INSTABILITY OF ONE-SIDED SCHEMES FOR HYPERBOLIC

SYSTEMS WITH EIGENVALUES OF MIXED SIGN

Here we examine the hyperbolic system of equations

_U _U
_-_+ A Tx = 0 , (AI)

where A is a constant matrix with both positive and negative

eigenvalues. In Sec. 2 it was shown that approximating _xU with

either VxU or 8xU must always lead to instability for the time-

continuous system of equations. In this Appendix, we argue that

all conventional backward, forward, or biased (e.g., Eq. (2.13)) 1

finite-difference approximations to _xU will be unstable if A

has both positive and negative elgenvalues, i
I

As shown in Sec. 2, Eq. (AI) can be transformed into an _:_

i

uncoupled system of scalar wave equations of the form

_u + I _u l
_-_ _x = 0 , (A2)
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where t is either positive or negative• With introduction of a

spatial-difference approximation, Eq• (A2) is replaced by a system

of ordinary differential equations

d___._ +? (A3)
dt '

_"
where u = (u, u2, u3, • • •, uj, • • •) uj -" u(JAx), contain_

known boundary data (if any) and M is a constant coefficient

matrix. For example, if _x is approximated by Vx with given :

boundary data on the left-hand boundary, then

1 J%

-i 1 0 I 0 .:
-i i )

-i 1 J 0

X =- A-"_ • • ' = .

IO • • •

-i L •

If _x is appr_xlmated by Eq. (2.13), then

' "-36 -i "2us"
-2 -3 6 -i 0 0

-2 -3 6 -i , _ ="=- 6A_ _ o . (AS)
• , • • 0

• • e • •
• • • • •

no • •

In this latter example the values of M would change to accommo-

date an alternative choice of differencing at the right-hand

boundary.
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The solution of Eq. (A3) is (cf. [17, 18])

_ [u - e uo + particular solutlon .

If M has an eigenvalue with a positive real part, then eMt I!

as t _ _ and the solution is unbounded. However, any con¢en- lIi
i:

tional backward, forward, or biased differenced scheme leads to a _

matrix M with a nonzero real trace. The trace contains _ as a

multiplier and the sum of the eigenvalues of M equals its trace.

Consequez_tly,for either the case _ positive or _ negative,

Mt
e �_as t since at least one eigenvalue will have a

posit£ve real part. Thus, conventional backward, forward, or

biased dlffer_-_e schemes are unstable.

The above argument, showing instability, is not altered by

boundary conditions since they will only affect a few end-polnt

elements of the mtrix M0 For a large mtrix (refined spatial

grid), these few elements cannot alter the sign of the trace. Note
i

that the use of central spatial differencing,which can be stable,

leads to a matrix M with zero trace. We remark also that a non-

conventional upwind differencing such as
t

also has a zero trace and thus must be proved to be unstable by _
z

another argument.
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APPENDIX B: GENERALIZED FLUX VECTOR FOR TWO AND THREE SPATIAL

DIMENSIONS

Two-Dimenslonal Case

The system of conservation laws (7.1) can be rewritten In

quasl-llnear form (7•4)• Define a matrix P as /

P = klA + k2B , (B1)

where kI and k2 are arbitrary real numbers. The system (7.4) Is

hyperbollc at: the point (x, y, t, U) If there exists a slmllarlty

transformation such that

0
12

Q-IpQ = = A , (B2)

0

I

where the elgenvalues I_ are real and the norms of Q and Q-l

are uniformly bounded•

The formulas in the remainder of this appendix pertain to the

inviscld equations of gasdynamlcs for a perfect gas. The Jacoblans

A and B are 4 x 4 matrices and Q and Q-I can be written as

Q = HT , Q-; = T-IH-I , (B3)

where H, T, and their inverses are given In the appendix of [2].

In general, the elements of Q and Q-I are functLona of the param-

eters (kl,k 2) and the dependent variables. For example, the ele-

ments (Q)33 and (Q-I)33 are
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1
[ckI (v- l)u]Q33 " -P-- (v + ck2) , (Q-I)33 "-- - ,

where u and v axe the x- and y-velocity components, p is the

density, c is the local speed of sound, y Is the ratio of spe-

cific heats, and

The eigenvalues _ of P are

_I " _2 " ktu + k2v ' _3 _ _I _ c(k_ + k_) I/2 'I

I (Bs)

_ - x1 - c(k_+ k_)I/2.

Formula (B2) can be rewritten as

P = klA + k2B = QAQ-I (B6)

Hence, the matrix A or B, or any llnear combination, can be

recovered from (B6).

As in the one-dlmenslonal case (see Sec. 4), it is convenient

to define a generallzed flux vector by

where nov the eit_nvalues _ of the diagonal matrix _ are taken

to be arbltcary. Although the matrix Q-I is rather complex, the

product Q-Iu is simply

if
Y

0

q'_v = . (B8)
C1

C

_y

38

1979020779-040



Completlng the computatlon for the generalized flux vector we

2(-)-1)_ 1 + i 3+ _,

2(_-1)_lu + :_3(u+ c_.I) + _,_(u-c_ I) !
]-

2(_-l)_iv+ _3(v• c_2)+ i_(v-c_2)
27 (,

(x=1)_1(u2+v2)+-_-[(u+c_i)2+ (v+c_2)2]

+_- [(u-c_l)2+ (v-c_2)2]+ wIZ
m

where

(3 - _')(_3+ _,,)c2
WII " 2(7 - I)

and k!, k_ are deflned by Eq. (B4). The conventlonal flux vector

F(U) is obtalned from (B9.)If kl = I, k2 - O, and the ),f's aq

glven by (B5) are Inserted In (B9). L1kewlse, G(U) Is recove,ed

If kI = O, k2 = I. Formula (Bg) can be used to obralr, any flux

vector spllttln8 as described In Secs. 7 and I0.

Three-Dlmen._ tonal Case

In three spatlal dlmenslons, a hyperbollc system of conserva-

tion laws has the form

_.o+ _)'(o)+ _c(o) + _,(u).. o . (BlO)
_t _x _y _z

This system can be revrltten in quas1-11near form as

_U _U _U _U

--_'+A--_ _+C-_--_'z= 0 , (Bll)
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where A, B, C are the Jacobian matrices

A = _U ' B = _U ' C _U " (B12)

The generalizatlon of (BI) is

P = klA + k2B + k3C • (BI3)

The eigenvalues of P are

_I = _2 = 43 = klu + k2v + kBw ' _ (BI4)

J14 = %1 + c(k'k) I/2' 45 = 11 - c(k'k)I/2

where

k.k = k 2 + k2 + k_ .

The matrices M, T, and their inverses, which are needed to compute

Q and Q-I as defined by Eq. (B3), are given in [6]. The gener- i

alized flux vector for three space dimensions is defined by 1

_III = QAQ-IU ' (BI5) _

where tileeigenvalues i£ of the 5 x 5 diagonal _trix A are i
t

again arblt_ary. For the purpose of calculating _III' we assume

that il = _2 = _3 because this is the case for the physical

eigenvalues of the matrix P defined by Eq. (BI4) and for the

eigenvalue splittings of interest. The product Q-IU is

_k 1(Y - i_

pk 2(Y - I)

!
Q-IU = _ Pk3(Y - i) (BI6)

c//f
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and the generalized flux vector is

_II --

• z(_-1)iI +i 4+i s

2(v-l)ilu+ _(u+c_ I)+ _s(u-c_I)

2(_-l)_iv+ i4(v+c_2)+ is(V-c_2)

o_e_ 2(y-l)ilw+ i_(w+c_3)+ _,s(W-c_3)
2y

t

(Y-l)_l(U2+V2+W2) + "-2"-[(U+CI<I)2 + (v+ck2)2 + (w+cl<3)2] i

)

+-f [(u-c_i)2+ (v-c_2)2+ (w-cI<3)2]+ wux + P

(B17)
where

(3- y)(i,++ _,s)c2
Wlll =" 2(y- i)

P = 2p(y - l)_Ikl(k2w - k3v) ,

u, v, and w are the x-, y-, and z-velocity components, and

,_,- k,/(k_+k)+k)),I_
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EXPLICIT UPWIND SCHEME

SOLUTION AT TIME = 1.0
INITIAL PRESSURE RATIO = 5.0

1.0 _ (At/AX) = 0.2

MOo

,2- *_

o I ! I I
2 3 4 5 ,

X

FIG. 1. b;hocl¢-tube solution obtained using explictt upwind

scheme.
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• i

MacCORMACKSCHEME

SOLUTION AT TIME = 1.0
INITIAL PRESSURE RATIO = 5.0
(At/Ax) = 0.2

O NUMERICAL

----" EXACT

.6-- E)OEPF_
plpo C/_,_

.4- E).2 _
0

o I I I , I
2 3 4 5

X

FIG. 2. Shock-tube solution obtaLned with explicit MacCorma_zk

scheme.
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ALTERNATING MacCORMACK AND
EXPLICIT UPWIND SCHEMES

SOLUTION AT TIME = 1.0

INITIAL PRESSURE RATIO = 5.0 1'_(&t/_x) = 0.2

1.0 O NUMERICAL I

0 0 ------ EXACT :18

-Q

p/So'S- %__'I
•4 m

o I I I I
1 2 3 4 5

X

FIG. 3. Shock-tube solution obtained by alternating explicit

upwL_d and HacCormack schemes.
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IMPLICIT UPWIND SCHEME

SOLUTION AT TIME = 1.0
INITIAL PRESSURE RATIO = 5.0

1.0
GI3E_,_¢:C_ (&t/&x) = 0,2

.8 - _E)O O NUMERICAL !

6

PlPo .4

.2

o I I I I
2 3 4 5

X

FIG. 4. Shock-tube solution obtained [rom tmpl.icit upwind

sc]lteme.
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IMPLICIT CENTERED SCHEME

SOLUTION AT TIME = 1.0
INITIAL PRESSURE RATIO = 5.0
(_t/Ax) = 0.2

SMOOTHING COEFFICIENT OF 0.03 l

1,0 [(__(_ O NUMERICAL i
.8

.6

P/Po .4

.2

oL_._..__J__....L I J
1 2 3 4 5

X

FIG. 5. Shock-tube ,_o]utionobtained using impliciL algorit:hm

with central spatial differenelng.
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O SPLIT UPWIND SCHEME

------- CENTRAL DIFFERENCING ALGORITHM
O

-.8- . (3

-_6 m

-,4

- Cp
-.2- O

Cp
0

.2

.4 LINEARIZED BOUNDARY EQUATIONS) (_
O

.e? I J
0 .5 1.0

x/c

FIG. 6. Stea.4y state solution for 11.47. thick parabolic arc

airfoil, H..= 0.84.
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